Дыхательные Движения Плода

Девочки всем привет, как обычно делюсь с Вами своими советами и опытом молодой мамы, хочу рассказать о Дыхательные Движения Плода. Возможно некоторые детали могут отличаться, как это было у Вас. Всегда необходимо консультироваться у специалистов. Естетсвенно на обычные вопросы, обычно можно быстро найти профессиональный ответ на сайте. Пишите свои комменты и замечания, совместными усилиями улучшим и дополним, так чтобы все поняли как разобраться в том или ином вопросе.

Дыхание у плода

Внешнее дыхание в период внутриутробного развития осуществляется через плаценту; легкие как орган дыхания не функционируют.

Зачаток дыхательной системы появляется у зародыша в конце 4-й недели; в первые месяцы быстро развиваются бронхиальное дерево и сосудистая сеть, позднее дифференцируются альвеолярные протоки и альвеолы.

К концу внутриутробного периода строение легких достигает той степени развития, которая полностью обеспечивает функцию дыхания.

Эпителий воздухоносных путей плода продуцирует жидкий секрет, покрывающий стенки трахеи, бронхов, альвеол. Над тонким слоем жидкости, покрывающей альвеолы, располагается сурфактант.

Он представляет собой тонкую пленку липопротеида, которая способствует расправлению легких и нормальной их функции после рождения. Развитие легких происходит одновременно со становлением и развитием систем, регулирующих функцию дыхания после рождения плода.

Происходит иннервация легких и других частей тела, участвующих в акте дыхания, устанавливается связь периферической нервной системы с центрами, регулирующими процесс дыхания. В первой половине внутриутробного периода (к 16—17-й неделе) формируется инспираторная часть дыхательного центра, к 21—22-й неделе появляется активная экспирация, быстрая организация вдоха и выдоха, т. е. плод может дышать.

Во внутриутробном периоде развития у плода происходят нерегулярные дыхательные движения, являющиеся подготовкой к будущему внеутробному дыханию.

Предполагают, что в грудной полости при дыхательных движениях создается отрицательное давление, способствующее притоку крови к сердцу плода; таким образом, дыхательные экскурсии оказывают положительное влияние на кровообращение.

Дыхательные движения плода несопоставимы с внеутробным дыханием. При дыхательных экскурсиях грудной клетки легкие не расширяются; околоплодные воды проникают в носоглотку и тотчас выливаются обратно потому, что дыхательные движения совершаются при закрытой голосовой щели.

Вы соблюдаете назначения врача?
Да, они долго учились и многое знают.
48.03%
Нет, только советы бывалых мам.
14.47%
Соблюдаю, но думаю перед тем как принимать что либо.
37.5%
Проголосовало: 152

Предполагают, что плод может аспирировать некоторое количество вод, которое затем всасывается. Этот процесс существенно отличается от аспирации околоплодных вод при асфиксии.

В случае асфиксии плод совершает вдох при открытой голосовой щели, вода попадает в дыхательные пути в значительном количестве, не рассасывается и препятствует установлению внеутробного дыхания.

Процессы развития плода совершаются на фоне интенсивного обмена веществ и возрастания активности окислительных процессов. Возрастающая потребность плода в кислороде в физиологических условиях удовлетворяется полностью.

При недостаточном снабжении плода кислородом в его организме, помимо окислительных процессов, возникает анаэробный гликолиз. Кислород переходит из крови матери к плоду путем диффузии через эпителиальный покров ворсин и эндотелий капилляров плода.

С развитием беременности слой цитотрофобласта почти исчезает, синцитий становится тоньше; в связи с этим процесс диффузии кислорода и выведения углекислого газа облегчается.

Процессу газообмена и доставки плоду необходимого количества кислорода способствуют: разрастание сосудистой системы ворсин развивающейся плаценты пограничная поверхность обмена), нарастающее кровоснабжение плаценты и скорость тока крови плода в ней, усиление утилизации кислорода из крови матери (протекающей между ворсинами) по мере увеличения срока беременности.

К факторам, облегчающим доставку кислорода плоду, относятся также повышение сродства фетального гемоглобина к кислороду, обогащение крови плода эритроцитами и гемоглобином, а также усиление эритропоэза и синтеза гемоглобина у матери.

С рождением ребенка происходит первый вдох (при котором расправляются легкие) и устанавливается внеутробное дыхание. Механизм первого вдоха сложен. Основную роль играет обеднение крови кислородом и накопление в ней углекислого газа, возникающее в связи с прекращением плацентарного дыхания.

Это приводит к возбуждению центров, регулирующих систему дыхания. Большое значение имеют также рефлекторные реакции, возникающие в связи с воздействием на рецепторы кожи новорожденного тактильных, термических и других раздражителей, исчезновение внутриматочного давления, изменение положения тела и др.

В результате потока импульсаций резко повышается возбудимость ретикулярной формации ствола мозга и центров дыхания, что приводит к возникновению первого вдоха.

Расправление легочной паренхимы приводит к раздражению рецепторов легких, последующей импульсаций и возбуждению центрального звена системы дыхания. Так начинается внеутробное дыхание.

Турагентство «Клуб
Путешествий Югра» :
Раннее бронирование
— скидки 50%!

Внешнее дыхание в период внутриутробного развития осуществляется через плаценту; легкие как орган дыхания не функционируют.

Биофизический профиль плода в классических публикациях и современных рекомендациях

УЗИ сканер HS50

Доступная эффективность. Универсальный ультразвуковой сканер, компактный дизайн и инновационные возможности.

Биофизический профиль плода (БПП) — неинвазивный тест, позволяющий оценивать состояние внутриутробного плода и прогнозировать его антенатальную (либо перинатальную) гибель [1].

Оценка БПП — это суммарный результат двух способов мониторинга фетоплацентарной системы: ультразвукового (УЗ) и кардиотокографического (КТГ):

  • УЗ-мониторинг включает оценку объема околоплодной жидкости, а также нескольких типов двигательной активности (генерализованных движений тела, дыхательных движений, мышечного тонуса) плода;
  • КТГ-мониторинг позволяет изучать изменчивость (вариабельность) сердечного ритма плода.

УЗ-сканирование плода, плаценты и околоплодной жидкости проводится в В-режиме и реальном времени, КТГ — при помощи фетального кардиомонитора, интегрированного с микропроцессором для непрерывной записи данных о частоте сердечных сокращений (ЧСС) плода.

Физиологические и патофизиологические основы БПП

В ответ на снижение оксигенации пуповинной крови возникает последовательность компенсаторных реакций плода, позже сменяющихся декомпенсацией. Основная идея биофизического мониторинга — обнаружение реакций плода на метаболические сдвиги: ранних или хронических (в виде уменьшения объема околоплодной жидкости), а также поздних или острых (в виде снижения различных составляющих двигательной активности плода и реактивности сердечной деятельности).

В процессе формирования центральной нервной системы (ЦНС) плода происходит созревание регуляторных центров, отвечающих за двигательную активность, суточные циклы, а также изменение ЧСС плода при его движениях.

Созревание рефлекторных функций ЦНС плода происходит постепенно: первые общие движения тела регистрируются в 6 нед, первые дыхательные движения — в 12-14 нед, ускорение ЧСС в результате движений тела (миокардиальный рефлекс), а также циклы сна и бодрствования формируются к 20-й нед [2].

Фетальный миокардиальный рефлекс (МКР) проявляется ускорением (акцелерацией) ЧСС плода в ответ на его же собственные спонтанные движения. При ацидозе плода функции ЦНС, в том числе и МКР угнетаются, из-за чего вариабельность сердечного ритма плода снижается. Выраженность МКР характеризует компенсаторные возможности плода.

МКР, так же как и все типы двигательной активности плода, -производные деятельности разнообразных нервных регуляторных центров (табл. 1). Таким образом, показатели шкалы БПП отражают функциональное состояние ЦНС плода — системы, максимально чувствительной к концентрации кислорода.

Мозговые центры Биофизическая активность плода
Продолговатый мозг Акцелерации ЧСС
Дыхательный центр Дыхательные движения
Кора головного мозга Общие движения
Подкорковые структуры Мышечный тонус

В основе патогенеза снижения количества амниотической жидкости при плацентарных нарушениях и снижении оксигенации пуповинной крови лежит механизм перераспределения и централизации кровообращения плода, в результате чего развивается почечная ишемия и олигоурия плода. Оценка объема околоплодных вод — важный аспект антенатального УЗ-мониторинга при высоком риске развития дистресса плода.

К 28 нед гестации формируется система комплексных поведенческих моделей плода, которую называют «биофизическим профилем», или тестом фетального благополучия (fetal well-being test) [2]. В акушерской практике тест БПП получил широкое распространение благодаря высокоспецифичному и воспроизводимому соответствию уровню плодовой рН крови, а также корреляциям результатов теста с оценкой состояния новорожденного по шкале Апгар [4]. Это позволяло еще в начале 1980-х гг. судить о состоянии внутриутробного плода и прогнозировать исходы беременности [5].

КТГ критерии

КТГ плода часто проводится как самостоятельный клинический антенатальный либо интранатальный тест. Тест основан на оценке вариабельности фетальной сердечной деятельности как показателя компенсаторных возможностей. При этом используются специальные балльные шкалы, позволяющие описывать сомнительные, тревожные и патологические ритмы. Учитывается амплитуда и частота колебаний ЧСС, частота и амплитуда ускорений (акцелераций), реакций ЧСС на схватки либо искусственные раздражители (стрессовые тесты). В ряде случаев о дистрессе плода свидетельствует появление противоположных тенденций изменения ЧСС — замедление (децелерации) сердечного ритма [6]. Квалифицированная комплексная оценка КТГ требует учета данных токографического канала (записи сокращений матки), проведения исследования длительностью не менее 30 мин, а в сомнительных ситуациях — до 60 мин, учета суточных биоритмов плода (поправок на периоды сна), изучения амплитудных и частотных характеристик вариабельности сердечного ритма, автоматизированного компьютерного анализа [3, 7].

В методику же изучения БПП плода включен единственный критерий КТГ — результат нестрессового теста (НСТ). Для нормального (реактивного) НСТ характерно наличие акцелераций сердечных сокращений в ответ на собственные движения плода за счет нормального МКР. Если физиологические акцелерации отсутствуют, ритм ЧСС приобретает черты монотонного (ареактивный НСТ).

Очевидно, что единственно верным способом адекватного проведения НСТ для оценки БПП является КТГ с применением дополнительного, актографического канала, регистрирующего спонтанные движения плода (рис. 1). Рекомендуемое время записи — 20 мин. Балльная оценка НСТ основана на подсчете количества акцелераций за стандартное время наблюдения [4, 8].

а) Вариабельный НСТ, характерный для нормальной реактивности сердечной деятельности плода, с наличием учащений (акцелераций) в ответ на движения.

б) Ареактивный, монотонный, авариабельный НСТ. ЧСС без акцелераций, риск дистресса и антенатальной гибели плода крайне высокий.

Ультразвуковые критерии БПП

Их анализ требует обозначения времени начала исследования и проведения непрерывного УЗ-мониторинга плода длительностью 30 мин [9]. Исследование может быть прекращено раньше, если регистрируются все критерии нормального теста. Однако эхографические критерии БПП оцениваются как аномальные лишь при длительности наблюдения не менее 30 мин [2]. УЗ-компоненты БПП непременно оцениваются в тот же день, что и НСТ.

Дыхательные движения плода — видимые ритмичные движения грудной клетки и передней брюшной стенки плода. Наилучшим образом регистрируются при сканировании туловища плода в сагиттальной плоскости. Дыхательные движения плода обычно бывают быстрыми, частыми и нерегулярными. Длительностью эпизода дыхательных движений плода считается период непрерывной их регистрации — от начала до завершения. Возникновение и прекращение эпизодов дыхательных движений плода всегда бывает спонтанным (рис. 2).

Эпизодическая регистрация дыхательных движений плода в редких случаях возможна с 15-19 нед гестации. По мере прогрессирования беременности их частота возрастает, длительность эпизодов варьирует от 30 с до 20 мин. Изолированная оценка дыхательных движений плода не должна применяться в качестве самостоятельного прогностического критерия. Балльная оценка дыхательных движений плода основана на наличии либо отсутствии их регистрации, а также длительности эпизода. Ложные дыхательные движения плода — видимые ритмичные отклонения грудной и брюшной стенки плода, возникающие за счет пульсации материнских сосудов и дыхательных движений самой беременной.

Видео 1. Дыхательные движения плода, поступление амниотической жидкости в дыхательные пути плода.

Видео 2. Дыхательные движения плода, движения брюшной и грудной стенок.

Видео 3. Нормальный мышечный тонус и двигательная активность плода.

Двигательная активность плода оценивается на основании регистрации разнообразных движений плода: ротаций либо смещений туловища плода по сравнению с начальной позицией, общих движений тела, медленных движений конечностей, потягиваний либо вращений плода. Количество регистрируемых движений — основа балльной интерпретации двигательной активности плода в шкале БПП.

Мышечный тонус плода — наличие сгибательных и разгибательных движений туловища и конечностей (рис. 3).

Для аномального мышечного тонуса плода характерно устойчивое разгибательное положение позвоночника в шейном отделе, разгибательные позиции локтевых и коленных суставов. Необходимо понимать, что наличие двигательной активности плода невозможно без наличия мышечного тонуса, т.е. позитивная оценка двигательных характеристик плода всегда совпадает с позитивными тонусными характеристиками. В случаях негативной оценки движений плода общее снижение мышечного тонуса свидетельствует о прогрессировании внутриутробного неблагополучия (рис. 4).

а) Двухплодная беременность 28 нед, антенатальная гибель одного из близнецов.

б) Прогрессирующая устойчивая разгибательная позиция шейного отдела позвоночника выжившего близнеца в сочетании с его маловодием, клинически антенатальный дистресс, разгибательное вставление головки в родах, неблагоприятный постнатальный результат.

Количество амниотической жидкости — важный показатель внутриутробного функционального состояния и метаболизма плода. Традиционные методики предполагают измерение глубины максимального кармана амниотической жидкости, современные — вычисление полуколичественного амниотического индекса.

Плацентарные градации — определение эхографических степеней зрелости плаценты — традиционно применяются в оценке БПП (по принципу соответствия степени зрелости плаценты гестационному периоду).

Традиционная методология БПП

Классические методики оценки БПП основаны на использовании шкал F.A. Manning и соавт. [8] либо A.M. Vintzileos и соавт. [4], которые различаются количеством параметров и балльными интерпретациями (табл. 2, 3).

Критерий/оценка 2 балла 0 баллов
НСТ Наличие двух акцелераций ЧСС с амплитудой 15 уд/мин продолжительностью 15 с Ареактивный НСТ
Дыхательные движения Регистрация эпизодов длительностью 30 с Отсутствие дыхательных движений плода (апноэ) либо длительность эпизодов менее 30 с
Двигательная активность Наличие 3 и более генерализованных движений 0-2 эпизода генерализованных движений
Мышечный тонус Регистрация хотя бы одного эпизода сгибаний/разгибаний позвоночника или конечностей Атония плода
Амниотическая жидкость Глубина кармана амниотической жидкости, не содержащего пуповины, более 2 см Олигогидрамнион (глубина максимального вертикального кармана менее 2 см)
Критерий/оценка 2 балла 1 балл 0 баллов
НСТ (наблюдение на протяжении 20 мин) Наличие 5 или более акцелераций ЧСС амплитудой 15 уд/мин продолжительностью 15 с Наличие 2-4 акцелераций ЧСС амплитудой 15 уд/мин продолжительностью 15 с 0-1 акцелерация ЧСС
Дыхательные движения Один или более эпизодов продолжительностью 60 с Хотя бы один эпизод продолжительностью 30-60 с Отсутствие дыхательных движений плода (апноэ) либо длительность эпизода менее 30 с
Двигательная активность Регистрация хотя бы 3 эпизодов движений туловища и/или конечностей * Регистрация 1-2 движений Отсутствие движений
Мышечный тонус Один эпизод сгибания/разгибания конечностей и один эпизод сгибания/разгибания позвоночника Хотя бы один эпизод сгибания/разгибания конечностей (или один эпизод сгибания/разгибания позвоночника) Конечности разогнуты. Нет возврата к флексорному положению. Ладони раскрыты
Амниотическая жидкость Амниотическая жидкость визуализируется во всех отделах амниотической полости. Глубина вертикального кармана 2 см и более Глубина вертикального кармана 1-2 см Глубина вертикального кармана менее 1 см
Плацентарные градации 0, I, II степень зрелости плаценты Задняя позиция плаценты (затрудненная визуализация) III степень зрелости плаценты

Максимальная балльная оценка по шкале F.A. Manning и соавт. составляет 10 баллов, по шкале A.M. Vintzileos и соавт. — 12 баллов. Прогноз состояния плода и тактика прямо зависят от суммы баллов.

Модифицированный БПП

Изначально, по замыслу авторов методики, основой оценки БПП являлись УЗ-критерии шкалы, а НСТ проводился избирательно, при аномальных данных УЗ-мониторинга [8].

Исследования, проведенные позже, показали, что именно НСТ является высокоспецифичным и наиболее объективным методом мониторинга состояния плода, первоочередным в антенатальном наблюдении при высоком риске дистресса. Эхографические критерии БПП, по наиболее современным представлениям, не имеют первостепенного значения, они должны оцениваться в случаях ареактивного либо трудно интерпретируемого результата НСТ, например при аритмии плода [10].

Еще более неэффективным (как показали недавние систематические клинические обзоры) является использование только эхографических данных БПП, без учета НСТ, выполненного в один день с УЗ-cканированием [11].

Модифицированный БПП — комбинация только данных НСТ и индекса амниотической жидкости [10]. Эта модификация теста широко используется в последние годы. Критериям, которые лежат в ее основе, присуща максимальная объективность, они не требуют больших затрат времени [12]. Было показано, что классический и модифицированный тесты БПП имеют одинаковые ложноотрицательные прогностические показатели смертности (определяемые как частота гибели плода в течение недели при нормальном результате теста) [13].

Согласно рекомендациям американской National Imaging Association [2010-2013], метод традиционного развернутого теста БПП имеет преимущества и показан к применению в следующих случаях:

  • если НСТ недоступен;
  • если НСТ ареактивен;
  • если интерпретировать НСТ невозможно (в частности, при аритмиях плода по типу атриовентрикулярной блокады либо суправентрикулярной тахикардии, когда показатели ЧСС, так же как и допплеровские индексы артерии пуповины, невозможно оценивать [10, 11].

Клиническое применение БПП: современный взгляд

Рутинное применение методики БПП в акушерской практике на протяжении нескольких десятилетий, накопленный клинический опыт сформировали объективный и весьма критический взгляд на методику с позиций практического использования и прогностической ценности [14].

Мнения об эффективности теста противоречивы. Некоторые обсервационные исследования показали связь между аномальным БПП и перинатальной смертностью и церебральным параличом [4], в то время как другие не демонстрировали этой ассоциации и показывали низкую диагностическую эффективность методики на фоне высокой частоты ложноположительных и ложноотрицательных результатов [15]. Также противоречивы данные об ассоциации результата БПП с фетальной ацидемией [16]. В большом обсервационном исследовании частота ложноотрицательных результатов БПП составила 0,8/1000, но 60 % аномальных тестов имели ложноположительный результат [17].

Тем не менее многочисленные актуальные национальные рекомендации по дородовому наблюдению поддерживают концепцию необходимости биофизического тестирования с кратностью 2 раза в неделю при высоком перинатальном риске, в частности при пролонгировании беременности после 42 нед, а также при инсулинзависимом диабете.

Практический опыт использования метода показывает, что оценка мышечного тонуса и разных типов движений плода в той или иной мере подвержена не только объективным факторам, перечисленным выше, но и субъективизму исследователя. К недостаткам метода относят его высокую экономическую затратность в связи с регламентированным 30-минутным временем мониторинга. Внесение поправок на сон плода как важный фактор фетальной поведенческой модели фактически требует еще более значительных затрат времени [7]. Кроме того, ряд факторов, которые оказывают непосредственное влияние на параметры БПП [9], усложняют интерпретацию и снижают диагностическую ценность методики (табл. 4).

Фактор/ Критерии БПП Акцелерации ЧСС Мышечный тонус Двигательная активность Дыхательные движения Амниотическая жидкость
Сон плода
Гестационный возраст > 42 нед
Прием матерью глюкозы
Назначение матери препаратов магния
ПРПО
Родовая деятельность

Наибольшую эффективность метод демонстрирует в диагностике выраженного страдания плода — дистресса, т. е. метаболического ацидоза. В то же время в диагностике ранних и промежуточных стадий нарушения состояния плода (т. е. при высоком риске дистресса) клиническое применение метода ограничено его невысокой чувствительностью и специфичностью [14]. УЗ-градации плаценты, по крайней мере в последние недели беременности, вовсе утрачивают свои диагностические значения.

В последние годы проводились систематические обзоры исследований, посвященных применению БПП в акушерской клинике. В результате было показано низкое клиническое значение оценки БПП, так же как и антенатального КТГ наблюдения у беременных общей популяции при низком риске перинатальных осложнений [18]. Эффективность теста БПП для предупреждения перинатальных потерь в субпопуляции беременных высокого риска также на сегодня убедительно не доказана [12].

В то же время роль допплерографии артерии пуповины в снижении перинатальной смертности при высоком перинатальном риске имеет уровень доказательности А (т. е. доказана систематическими обзорами с метаанализом) [19]. Таким образом, внедрение методов допплерографических исследований фетоплацентарной системы потеснило позиции БПП в клинической акушерской практике, поскольку достоверные и значимые изменения БПП манифестируют позже, чем результаты допплерографии [20]. Так, в 2001 г. было показано, что в 90 % случаев БПП становится аномальным лишь через 48-72 часов после гемодинамических изменений в венозном протоке при дистрессе плода [21].

В заключение можно сказать, что на определенных исторических этапах развития акушерского и перинатального диагностического ультразвука внедрение теста БПП имело революционное значение. Многолетние и многочисленные исследования его эффективности сопровождались противоречиями, дискуссиями и критицизмом. Тем не менее подавляющее большинство руководств по эхографии в перинатологии и сегодня все еще рассматривает БПП в качестве актуальной методики, отдавая предпочтение модифицированному варианту теста. Акушеры-гинекологи традиционно доверяют тесту БПП и зачастую опираются на его результаты при выработке перинатальной и акушерской тактики, несмотря на громоздкий дизайн, невысокие операционные характеристики метода и критичное отношение к нему радиологов.

Выводы

Современные представления о применении БПП имеют следующие особенности:

  • модифицированная методика БПП исключает оценку движений плода и содержит лишь данные о количестве околоплодных вод (маркер хронического страдания плода) и регистрацию НСТ КТГ (маркер острого нарушения состояния плода);
  • модифицированная методика БПП не уступает традиционной в диагностической эффективности;
  • УЗ-компоненты БПП cледует оценивать в тот же день, что и НСТ;
  • применение БПП и КТГ-мониторинга у беременных субпопуляции низкого перинатального риска не влияет на показатели статистики перинатальных потерь;
  • убедительные доказательства эффективности БПП в снижении перинатальной смертности у беременных субпопуляции высокого перинатального риска отсутствуют;
  • применение традиционного, развернутого теста БПП показано при ареактивном НСТ либо при невозможности интерпретации данных НСТ (в частности, при фетальной сердечной блокаде либо суправентрикулярной тахикардии);
  • аномальные показатели БПП регистрируются позже, чем допплеровские изменения в венозном протоке плода.

Литература

  1. Manning F.A. Fetal biophysical profile // Obstet. Gynecol. Clin. North. Am. 1999; 26 (4): 557-77.
  2. Gearhart P.A. Ultrasonography in biophysicsl profile (2013). Доступно на: https://emedicine.medscape.com/
  3. Murray M. Antepartal and Intrapartal Fetal monitoring. NY: Springer Publish., 2007.
  4. Vintzileos A.M., Gaffney S.E., Salinger L.M. et al. The relationships among the fetal biophysical profile, umbilical cord pH, and Apgar scores // Am. J. Obstet. Gynecol. 1987; 157 (3): 627-31.
  5. Manning F.A., Platt L.D., Sipos L. Antepartum fetal evaluation: development of a fetal biophysical profile // Am. J. Obstet. Gynecol. Mar 15 1980; 136 (6): 787-95.
  6. Воскресенский С.Л. Оценка состояния плода. Кардиотокография, допплерометрия, биофизический профиль / С.Л. Воскресенский. Минск: Книжный дом, 2004. 304 с.
  7. Демидов В.Н., Розенфельд Б.Е., Сигизбаева И.К. и др. Значение введения поправки на сон, продления и учета двигательной активности автоматизированной антенатальной кардиотокографии // Пренатальная диагностика. 2002; 1 (4): 263-71.
  8. Manning F.A., Morrison I., Lange I.R. et al. Fetal biophysical profile scoring: selective use of the nonstress test // Am. J. Obstet. Gynecol. 1987; 156 (3): 709-12.
  9. Guimarães Filho H.A., Araujo Júnior E., Nardozza L.M. et al. Ultrasound assessment of the fetal biophysical profile: what does an radiologist need to know? // Eur. J. Radiol. 2008; 66 (1): 122-6.
  10. American College of Obstetricians and Gynecologists. (2009). ACOG practice bulletin No. 101: Ultrasonography in pregnancy // Obstet Gynecol, 113, 451-461.
  11. Сафонова И.Н. Фетальные аритмии: антенатальная ультразвуковая дифференциальная диагностика, прогнозирование постнатальных результатов и перинатальная тактика // SonoAce Ultrasound. 2014; 26: 17-29.
  12. Lalor J.G., Fawole B., Alfirevic Z., Devane D. (2008). Biophysical profile for fetal assessment in high risk pregnancies // Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD000038.
  13. Eden R.D., Seifert L.S., Kodack L.D. et al. A modified biophysical profile for antenatal fetal surveillance // Obstet. Gynecol.1988; 71 (3): 365-9.
  14. Figueras F., Gardosi J. Intrauterine growth restriction: new concepts in antenatal surveillance, diagnosis, and management // Am. J. Obstet. Gynecol. 2011; 204 (4): 288-300.
  15. Cosmi E., Ambrosini G., D’Antona D., Saccardi C., Mari G. Doppler, cardiotocography, and biophysical profile changes in growth-restricted fetuses // Obstet. Gynecol. 2005; 106: 1240-5.
  16. Okamura K., Watanabe T., Endo H. et al. Biophysical profile and its relation to fetal blood gas level obtained by cordocentesis // Nippon Sanka Fujinka Gakkai Zasshi 1991; 43: 1573-7.
  17. Nageotte M.P., Towers C.V., Asrat T., Freeman R.K. Perinatal outcome with the modified biophysical profile // Am. J. Obstet. Gynecol. 1994; 170: 1672-6.
  18. Grivell R.M., Alfirevic Z., Gyte G.M.L., Devane D. Antenatal cardiotocography for fetal assessment // Cochrane Database of Systematic Reviews 2010, Issue 1. Art. No.: CD007863.
  19. Stampalija T., Gyte G.M.L., Alfirevic Z. Uteroplacental Doppler ultrasound for improving pregnancy outcome // Cochrane Database Syst Rev. 2010.
  20. Petraglia F., Boni C., Severi F.M. et al. Doppler examination of fetal and placental circulation; In Buonocore G., Bracci R., Weindling M. Neonatology: Springer, 2011. P. 60-3.
  21. Baschat A.A., Gembruch U., Harman C.R. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens // Ultrasound. Obstet. Gynecol. 2001; 18: 571-7.
  22. Сафонова И.Н. Антенатальные допплерографические мониторинги при беременности высокого перинатального риска: обзор современной литературы // Медицинские аспекты здоровья женщины. 2014. 83 (8): 2-12.

УЗИ сканер HS50

Доступная эффективность. Универсальный ультразвуковой сканер, компактный дизайн и инновационные возможности.

Тем не менее многочисленные актуальные национальные рекомендации по дородовому наблюдению поддерживают концепцию необходимости биофизического тестирования с кратностью 2 раза в неделю при высоком перинатальном риске, в частности при пролонгировании беременности после 42 нед, а также при инсулинзависимом диабете.

Как дышит ребенок в утробе матери: особенности плацентарного дыхания. Роль пуповины в процессе клеточного дыхания

Не каждая беременная женщина осознает, как дышит ребенок в утробе матери. Некоторых будущих мамочек этот вопрос очень интересует, а иногда и настораживает, поэтому лучше заранее разобраться в особенностях газообмена плода и роли плаценты и пуповины в этом процессе.

Процесс дыхания плода

Дыхание представляет собой процесс газообмена в живом организме, при котором из клеток выводится углекислый газ и поступает кислород, необходимый для полноценного функционирования всех систем организма.

Поэтому понятие, что ребенок не дышит, а беременная женщина дышит за двоих, является неправильным. Так как процесс дыхания подразумевает в себе не механический вдох и выдох, а газообмен в клетках организма. Плод начинает дышать еще в утробе матери, но этот процесс имеет отличительные особенности от привычного для нас дыхания.

Понять, как дышит ребенок в утробе матери, достаточно просто. Этот процесс происходит через плаценту, которая не только обеспечивает возможность дыхания, но также является проводником питательных элементов от матери к плоду и средством отведения от плода продуктов жизнедеятельности и метаболических процессов.

Кроме этих функций плацента выполняет также функцию разделителя, препятствующего смешиванию материнской крови и лимфы с биологическими жидкостями плода.

Как дышит младенец в утробе матери

Из организма матери по пуповине кислород передается плаценте. В обратном направлении от плаценты движутся продукты метаболизма и углекислый газ, который является продуктом клеточного дыхания плода.

Отработанный газ с кровью поступает в легочные артерии матери и выводится через дыхательную систему, а в альвеолах легких происходит газообмен. Этот процесс происходит бесконечно, позволяя насыщать организм матери и плода необходимым для жизнедеятельности кислородом.

Зная, как дышит ребенок в утробе матери, легко можно сделать вывод, что беременность является тяжелой нагрузкой на женский организм, так как он буквально работает за двоих, обеспечивая развивающегося малыша всеми необходимыми микроэлементами и витаминами и необходимым для жизни кислородом.

Роль пуповины в процессе дыхания

Организм матери и ребенка соединяется не только плацентой, но и пуповиной, которая представляет собой плотный жгут, состоящий из двух артерий и одной вены. По мере роста ребенка пуповина увеличивается в размере, и после рождения ее длина соответствует росту ребенка.

Через пуповину из организма плода отводятся продукты метаболизма, из вены в пуповине они поступают в кровоток матери и выводятся из ее организма. От матери через пуповину к плаценте поступают питательные вещества и кислород. Как дышит ребенок в утробе матери, можно понять только разобравшись в самом корне этого вопроса и понимая особенности процессов дыхания.

Значение свежего воздуха в процессе дыхания

Чтобы обеспечить свой организм и организма малыша, беременной необходимо много времени проводить на свежем воздухе, так как недостаток кислорода может вызвать не только головокружения и потери сознания матери, но и гипоксию у плода, что негативно влияет на его развитие.

Поэтому для понимания важности свежего воздуха нужно знать, как дышит ребенок в утробе матери. Фото плода, находящего в утробе матери, делает этот процесс более наглядным и понятным.

Так как легочная ткань ребенка созревает только на 34-й неделе, после воздействия на нее специального вещества – сурфактанта. Если ребенок рождается недоношенным, его подключают к аппарату искусственной вентиляции до тех пор, пока в организме малыша не созреет легочная ткань. Современная медицина научилась синтезировать сурфактант, позволяя обеспечить созревание легких и дать ребенку возможность самостоятельно дышать.

То, как дышит малыш в утробе матери, значительно отличается от процесса самостоятельного дыхания, для которого необходимо раскрытие альвеол легких. Поэтому беременной необходимо достаточно гулять на свежем воздухе и стараться как можно меньше времени пребывать в душных помещениях, чтобы избежать развития кислородного голодания и преждевременных родов.

Организм матери и ребенка соединяется не только плацентой, но и пуповиной, которая представляет собой плотный жгут, состоящий из двух артерий и одной вены. По мере роста ребенка пуповина увеличивается в размере, и после рождения ее длина соответствует росту ребенка.

Дыхание в периоде внутриутробного развития

Лёгкие начинают развиваться у эмбриона на 3 неделе. После 6 месяцев образуются альвеолы, их поверхность начинает покрываться сурфактантом. Посредствам верхних дыхательных путей полость лёгких сообщается с амниотической жидкостью. С 11 недели беременности появляются периодические сокращения инспираторных мышц – диафрагмы и в меньшей степени – межреберных мышц.

Дыхательные движения плода в основном обусловлены активностью дыхательного центра. Их частота увеличивается при увеличении напряжения углекислого газа в крови и ацидозе. Рефлекторные реакции дыхания при раздражении периферических (артериальных) хеморецепторов у плода ещё не развиты. Дыхательные движения плода представляют собой своего рода тренировку дыхательной системы к дыханию после рождения.

Образующаяся плацента становится основным органом внешнего дыхания плода на весь период его развития. В плаценте диффузия кислорода осуществляется менее эффективно, чем в лёгких (толщина плацентарной мембраны в 5-10 раз больше, чем легочной мембраны). В крови пупочной вены (т.е. в артериальной крови плода) парциальное напряжение кислорода обычно составляет 20-50 мм рт.ст. В этих условиях насыщение гемоглобина кислородом осуществляется лишь на 65 %. По отношению к взрослому организму содержание кислорода в крови плода соответствует тяжелой гипоксии (при парциальном напряжении кислорода в артериальной крови 35 мм рт.ст. взрослые теряют сознание). Однако ткани плода для развития получают достаточное количество кислорода за счёт нескольких обстоятельств:

· окислительные процессы в тканях плода имеют относительно невысокую интенсивность, зато более интенсивно протекает гликолиз;

· затраты энергии у плода ограничены;

· кровоток через ткани плода очень интенсивен (в 2 раза больше, чем у взрослых);

· клетки тканей плода эволюционно приспособлены к существованию при низких парциальных напряжениях кислорода;

· снабжению тканей кислородом способствует большее, чем у взрослых, сродство гемоглобина к кислороду.

У плода кривая диссоциации HbF расположена левее, в области более низких величин парциального напряжения кислорода, чем HbA. Для кривой диссоциации плода характерна большая крутизна. Большое сродство Hb плода к кислороду способствует образованию оксигемоглобина в плаценте, а большая крутизна кривой – отдаче кислорода тканям. “Рабочая часть” кривой диссоциации оксигемоглобина у плода находится в пределах 9-50 мм рт.ст. Напряжение углекислого газа в артериальной крови плода составляет 38-45 мм рт.ст., что близко к парциальному напряжению углекислого газа в артериальной крови у взрослых. Иногда парциальное напряжение углекислого газа даже ниже (32-33 мм рт.ст., гипокапния), чем у взрослых. Невысокое парциальное напряжение углекислого газа в артериальной крови плода объясняется гипокапнией беременных. Причиной является гипервентиляция беременных, обусловленная влиянием прогестерона на дыхательный центр.

Углекислый газ переносится кровью плода, как и у взрослых в трех формах: растворенный, бикарбонатный и карбонатный. Содержание углекислого газа в смешанный крови плодов обычно находится в пределах 400-500 мл/л (у взрослых в венозной крови – 580 мл/л).

ЛЁГКИЕ ПЛОДА. Начинают развиваться у эмбриона на 3 неделе. После 6 месяцев образуются альвеолы. Посредством верхних дыхательных путей полость лёгких сообщается с амниотической жидкостью. После 6 месяцев поверхность альвеол начинает покрываться сурфактантом. Секрецию сурфактанта усиливают глюкокортикоиды, катехоламины, простагландин Е.

ДЫХАТЕЛЬНЫЕ ДВИЖЕНИЯ ПЛОДА. С 11 недели беременности появляются периодические сокращения инспираторных мышц – диафрагмы и в меньшей степени – межреберных мышц. В конце беременности дыхательные движения занимают 30-70 % всего времени. Различают два типа движений:

1) короткие, с высокой частотой (30-100 в минуту) и неправильным ритмом – продолжаются длительное время;

2) более сильные и редкие, с частотой 1-4 в минуту (типа “вдохов”), наблюдаются реже и составляют примерно 5 % от времени дыхания.

Дыхательные движения плода в основном обусловлены активностью дыхательного центра продолговатого мозга. Они имеют место при нормальном газовом составе крови плода. Их частота увеличивается при гиперкапнии и ацидозе. Рефлекторные реакции дыхания при раздражении периферических (артериальных) хеморецепторов у плода ещё не развиты. Дыхательные движения плода представляют собой своего рода тренировку дыхательной системы к дыханию после рождения.

4. Дыхание в периоде новорождённости. Первый вдох ребёнка

Масса лёгких у новорождённого составляет около 50 г. Ацинусы недостаточно дифференцированы. Количество альвеол у новорождённых – 24 млн. (их количество – в 10-12 раз, а диаметр – в 3-4 раза меньше, чем у взрослых). Первый вдох наступает через 15-70 секунд после рождения, обычно после пережатия пуповины (иногда – до него), то есть сразу после рождения. Условия возникновения первого вдоха:

· наличие в крови гуморальных раздражителей дыхания: гиперкапнии, ацидоза и гипоксии, которые в отличие от взрослых могут возбуждать дыхательный центр, действуя непосредственно на мозговую ткань;

· резкое усиление потока афферентных импульсов от терморецепторов, проприорецепторов кожи и вестибулорецепторов (в процессе родов и сразу после рождения). Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра;

· устранение источников торможения дыхательного центра. Так, раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание – “рефлекс ныряльщика”. Поэтому сразу после появления из родовых путей головки плода акушеры удаляют с личика слизь и околоплодные воды, а иногда отсасывают жидкость из воздухоносных путей.

Первый вдох характеризуется сильным инспираторным возбуждением мышц вдоха. При этом происходит сильное снижение внутриплеврального давления (на 20-80 см вод.ст.; при последующих вдохах – лишь на 5) – начинается аэрация лёгких. Резкое падение давления необходимо для:

1) преодоления силы трения между жидкостью, находящейся в воздухоносных путях и их стенкой;

2) преодоления силы поверхностного натяжения альвеол на границе жидкость-воздух после попадания в них воздуха.

У части детей первый вдох бывает слабым (пониженное давление в плевральной полости на 3-10 см вод.ст.) В этих случаях аэрация лёгких начинается во время второго тоже сильного вдоха.

3. Аэрация лёгких у новорождённых

После первого выдоха в лёгких остается от 4 до 50 мл (иногда до 80 мл) воздуха. Далее функциональная остаточная ёмкость увеличивается от вдоха к вдоху. За первые 10-20 мин. она достигает примерно 75 мл. Аэрация лёгких обычно заканчивается ко 2-4 дню после рождения, когда функциональная остаточная ёмкость достигает примерно 100 мл.

Во время первого вдоха жидкость из воздухоносных путей поступает в альвеолы. Часть легочной жидкости удаляется при первых выдохах через верхние дыхательные пути. Спокойные вдохи у новорождённых перемежаются глубокими вздохами, способствующими аэрации лёгких и равномерному распределению воздуха в них, препятствуют образованию ателектазов. Аэрации лёгких способствует также увеличение сопротивления воздухоносных путей во время выдоха вследствие сужения голосовой щели (особенно при крике). Увеличение сопротивления препятствует выдоху воздуха из лёгких и спадению альвеол. После крика функциональная остаточная ёмкость у новорождённых увеличивается.

Спокойное дыхание у новорождённых является диафрагмальным. Малая абсолютная величина функциональной остаточной ёмкости (около 100 мл) требует достаточно высокой частоты дыхания и небольшой величины дыхательного объёма, иначе состав альвеолярного воздуха сильно изменялся бы в течение дыхательного цикла.

Частота дыхания у новорождённых достигает 30-70 в минуту. Дыхательный объём составляет примерно 17 мл. Выдохи имеют разную продолжительность. Спокойные выдохи в основном пассивны.

Объём мертвого пространства у новорождённых – 4-6 мл. Воздухоносные пути у новорождённых узкие, их аэродинамическое сопротивление в 8 раз выше, чем у взрослых.

Сочетание высокой растяжимости стенок грудной полости и низкой растяжимости лёгких является причиной низкой величины эластической тяги лёгких при выдохе, что определяет значительно меньшее отрицательное давление в плевральной полости у новорождённых (0,2-0,9 см вод.ст.), чем у взрослых (2 см вод.ст.). При этом снижение давления в плевральной полости при вдохе у новорождённых имеет большую величину (5 см вод.ст.), чем у взрослых (2-3 см вод.ст.).

Минутный объём дыхания у детей 1-14 суток жизни составляет около 500-900 мл/мин (у взрослых 6-9 л/мин).

Величина альвеолярной вентиляции у новорождённых – 400-500 мл/мин (у взрослых 5-6 л/мин).

Жизненная ёмкость лёгких (крика) новорождённого – 120-150 мл (у взрослых 3000-5000).

4. Транспорт газов кровью. Газообмен в лёгких

ТРАНСПОРТ ГАЗОВ КРОВЬЮ.Вследствие относительно высокой альвеолярной вентиляции в альвеолярном воздухе новорождённых содержится больше кислорода (17 %), чем у взрослых (14 %), и меньше углекислого газа (3,2 % относительно 6 % у взрослых). Парциальное давление кислорода в альвеолярном воздухе относительно велико (120 мм рт.ст.). Вентиляция и перфузия (на 1 кг массы тела) выше, чем у взрослых. Кровоток через лёгкие превосходит вентиляцию, а также отношение вентиляции к перфузии (кровотоку через малый круг кровообращения), которое у новорождённых составляет 0,65 (у взрослых – 0,8). Вентиляция лёгких у новорождённых неравномерна вследствие низкой вентиляции части альвеол.

Таким образом, для новорождённых по сравнению со взрослыми характерны: относительно высокая альвеолярная вентиляция; низкое отношение вентиляции к перфузии; небольшие гипоксия и гипокапния.

Насыщению крови кислородом способствует то, что кривая диссоциации оксигемоглобина у новорождённого смещёна влево из-за наличия в крови HbF (примерно 70 %) и относительно низкого содержания 2,3-дифосфоглицерата.

Поглощение кислорода тканями у ребёнка в первые минуты после рождения составляет примерно 10 мл/кг мин, т.е. идёт компенсация кислородного долга, возникающего в процессе родов и после перевязки пуповины. Через 30-60 минут после рождения потребление кислорода снижается и составляет у новорождённых 5-6 мл/кг в минуту (у взрослых – 4 мл/кг в мин.).

Метаболический ацидоз в первые часы жизни считается целесообразным, так как снижается pH крови, что стимулирует деятельность дыхательного центра.

Через 35-40 суток после рождения подавляющее количество Hb уже представлено HbA, поэтому кривые диссоциации оксигемоглобина уже мало отличаются от кривых у взрослых. Вследствие высокого парциального давления кислорода в альвеолярном воздухе напряжение кислорода в артериальной крови и насыщение Hb кислородом у детей выше, чем у взрослых.

В целом ткани детей надежно снабжаются кислородом за счёт интенсивной вентиляции лёгких и большой скорости кровотока (несмотря на невысокую кислородную ёмкость крови). Низкое напряжение углекислоты в альвеолярном воздухе и артериальной крови способствует диффузии углекислого газа из тканей в кровь и из крови в альвеолы.

ГАЗООБМЕН В ЛЁГКИХ. Вследствие высокой интенсивности вентиляции альвеолярного пространства альвеолярный воздух у детей по составу меньше отличается от атмосферного воздуха, чем у взрослых.

Напряжение кислорода в венозной крови, притекающей к легким у детей ниже (в 5 лет примерно 35 мм рт.ст.), чем у взрослых (40 мм рт.ст.). Соответственно градиент давлений, обеспечивающий диффузию кислорода через легочную мембрану, у детей выше. Напряжение кислорода в артериальной крови у детей выше (105-108 мм рт.ст.), чем у взрослых (100 мм рт.ст.).

Напряжение углекислого газа в венозной крови у детей также ниже, чем у взрослых. Относительно низкое напряжение углекислого газа обеспечивает у них меньшее (чем у взрослых) его напряжение в артериальной крови.

· устранение источников торможения дыхательного центра. Так, раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание – “рефлекс ныряльщика”. Поэтому сразу после появления из родовых путей головки плода акушеры удаляют с личика слизь и околоплодные воды, а иногда отсасывают жидкость из воздухоносных путей.

Дыхание плода. Механизм первого вдоха новорожденного. Особенности дыхания у птиц. Голос животных

Дыхание плода. Во внутриутробной жизни плод получает О2 и удаляет СО2 исключительно путем плацентарного кровообращения. Однако уже у плода появляются ритмические, дыхательные движения частотой 38–70 в минуту. Эти дыхательные движения сводятся к небольшому расширению грудной клетки, которое сменяется более длительным спадением и еще более длительной паузой. Легкие при этом не расправляются, остаются спавшимися, возникает лишь небольшое отрицательное давление в межплевральной щели в результате отхождения наружного (париетального) листка плевры и увеличения межплевральной щели. Дыхательные движения плода происходят при закрытой голосовой щели, а поэтому в дыхательные пути околоплодная жидкость, не попадает.

Значение дыхательных движений плода: 1) дыхательные движения способствуют увеличению скорости движения крови по сосудам и ее притоку к сердцу, а это улучшает кровоснабжение плода; 2) дыхательные движения плода являются формой тренировки той функции, которая понадобится организму после его рождения.

Дыхание новорожденного. С момента рождения ребенка, еще до пережатия пуповины, начинается легочное дыхание. Легкие полностью расправляются после первых 2–3 дыхательных движений.

Причиной первого вдоха является:

1) избыточное накопление СО2 и обеднение О2 крови после прекращения плацентарного кровообращения;

2) изменение условий существования, особенно мощным фактором является раздражение кожных рецепторов (механо- и термоцепторов);

3) разность давления в межплевральной щели и в дыхательных путях, которая при первом вдохе может достигнуть 70 мм водяного столбика (в 10–15 раз больше, чем при последующем спокойном дыхании).

При осуществлении первого вдоха преодолевается значительная упругость легочной ткани, обусловленная силой поверхностного натяжения спавшихся альвеол. При первом вдохе энергии затрачивается в 10–15 раз больше, чем в последующие вдохи. Для растяжения легких еще не дышавших детей давление воздушного потока должно быть примерно в 3 раза больше, чем у детей, перешедших на спонтанное дыхание.

Облегчает первый вдох поверхностно активное вещество – сурфактант, которое в виде тонкой пленки покрывает внутреннюю поверхность альвеол. Сурфактант уменьшает силы поверхностного натяжения и работу, необходимую для вентиляции легких, а также поддерживает в расправленном состоянии альвеолы, предохраняя их от слипания. Это вещество начинает синтезироваться на 6-м месяце внутриутробной жизни. При наполнении альвеол воздухом оно мономолекулярным слоем растекается по поверхности альвеол. У нежизнеспособных новорожденных, погибших от слипания альвеол, обнаружено отсутствие сурфактанта.

Давление в межплевральной щели новорожденного во время выдоха равно атмосферному давлению, во время вдоха уменьшается и становится отрицательным (у взрослых оно отрицательно и во время вдоха, и во время выдоха).

По обобщенным данным, у новорожденных число дыхательных движений в минуту 40–60, минутный объем дыхания – 600–700 мл, что составляет 170–280 мл/мин./кг.

С началом легочного дыхания за счет ускорения кровотока и уменьшения сосудистого русла в системе легочного кровообращения изменяется кровообращение через малый круг. Открытый артериальный (боталлов) проток в первые дни, а иногда недели, может поддерживать гипоксию за счет направления части крови из легочной артерии в аорту, минуя малый круг.

Особенности дыхания у птиц.

Физиологические особенности дыхания у птиц определяются анатомическими особенностями строения их дыхательного аппарата (прежде всего, наличием воздухоносных мешков, отсутствием диафрагмы) и касаются только механизмов внешнего дыхания. Благодаря воздухоносным мешкам, у птиц, в отличие от млекопитающих, возможно двойное дыхание. Смысл его заключается в том, что при вдохе воздух, проходя через легкие, в первый раз отдает кислород и принимает углекислый газ. Далее он поступает в воздухоносные мешки, которые выполняют роль обычных резервуаров. При выдохе воздух, выходя из воздухоносных мешков, во второй раз проходит через легкие, где опять происходит газообмен.

Акт вдоха у птиц совершается при сокращении мышц-инспираторов. При этом грудная, коракоидная кости, ключицы и ребра выдвигаются вперед и вниз, увеличивая угол между позвоночником и грудными частями ребер. В результате этого грудная клетка значительно расширяется, способствуя растяжению легких. Что же касается диафрагмы, она у птиц развита слабо и не имеет того значения, как у млекопитающих.

Частота дыхательных движений у птиц за 1 минуту составляет:куры – 12-45 индейки – 13-20; утки – 30-70 голуби – 15-32; гуси – 12-40.

Голос животных — это рефлекторная реакция, в которой принимают участие носовая и ротовая полость, легкие, гортань с голосовыми связками. Образование звуков связано с дыханием. Здоровые животные формируют свой голос, в то время как больные, и в особенности при заболевании голосового аппарата, обычно утрачивают это свойство. У разных видов сельскохозяйственных животных и птиц анатомическое строение отличается, что сказывается на образовании звука.

Голос животных — сложная, многозвеньевая рефлекторная реакция. Образование звука и его высота определяется напряжением голосовых связок, через которые под давлением проходит воздух из легких.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Акт вдоха у птиц совершается при сокращении мышц-инспираторов. При этом грудная, коракоидная кости, ключицы и ребра выдвигаются вперед и вниз, увеличивая угол между позвоночником и грудными частями ребер. В результате этого грудная клетка значительно расширяется, способствуя растяжению легких. Что же касается диафрагмы, она у птиц развита слабо и не имеет того значения, как у млекопитающих.

http://www.medison.ru/si/art407.htmhttp://www.syl.ru/article/206619/new_kak-dyishit-rebenok-v-utrobe-materi-osobennosti-platsentarnogo-dyihaniya-rol-pupovinyi-v-protsesse-kletochnogo-dyihaniyahttp://mydocx.ru/2-112842.htmlhttp://cyberpedia.su/8xea7b.html

Давайте вместе будем делать материал еще популярнее, и после его прочтения сделаем репост в удобную для Вас социальную сеть

.

Читайте также:  Живот Напрягаеться И Рпслобляеться 32 Неделя
Оцените статью
Ведение беременности и роды — будь мамой круглый день